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Abstract
The behaviour of a hydrophobic chain near a hydrophobic wall is studied in
three dimensions by numerically simulating a modified version of the decorated
lattice model of Widom and co-workers. The effective hydrophobic interaction
is temperature dependent. The chain stretches and adheres to the hydrophobic
wall in a pancake like conformation at intermediate temperatures, whereas
it collapses upon itself at slightly higher temperatures. At lower or higher
dimensions it is in a random coil state.

1. Introduction

The hydrophobic effect is of central importance in driving many biological processes, in
particular the folding of protein chains [1–5]. Yet it is still an active topic of research,
with contending theories attempting to capture many different, and seemingly conflicting
phenomena associated with it [6–12]. It is a challenge to identify the microscopic mechanisms
at work, and to apply them to understanding the behaviour of hydrophobic macromolecules
within an aqueous medium and confined near hydrophobic surfaces, such as lipid membranes,
at different temperatures.

The decorated lattice model of hydrophobic interactions introduced by Widom and co-
workers [11] aims to capture the entropy-mediated nature of the ‘hydrophobic interaction.’
This means that the non-polar (hydrophobic) molecule may enter an attractive interaction with
the water molecules, through dipole–induced dipole (van der Waals) interactions, even though
one would expect that the energy cost of inserting a hydrophobic solute molecule into water
would be positive, due to the breaking of hydrogen bonds between water molecules. If the low
energy state of the water–hydrophobe system corresponds to highly ordered configurations of
the water molecules, which allow this insertion without the breaking of too many hydrogen
bonds, then the entropy cost will be too great, and the free energy minimum will be found in
a phase space region where the hydrophobes are segregated from the water, at least in some
temperature interval.
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In the original model [11], hydrophobic molecules are not allowed to mix with water
molecules in the orientationally ‘disordered’ state of the water. In two parallel papers [13, 14]
we developed a slightly modified version of the Widom model, where all energies considered
are finite, and applied it to the statistics of hydrophobic chains in two dimensions. Analytical
calculations [13] and simulations [14] yielded a consistent picture, with the hydrophobic chain
adhering closely to the hydrophobic wall over a certain temperature interval, collapsing upon
itself at slightly higher temperatures, and existing in a random coil state at temperatures that
are either too hot or too cold.

In the present paper, we will report simulations of the same system generalized to three
dimensions. Since the ‘hydrophobic interaction’ itself is an entropy mediated one, with
many competing effects due to the orientational entropy of the water molecules and the
configurational entropy of the hydrophobic chain, it is not a priori clear how the emerging
picture will be affected by a change in the dimensionality of the lattice on which the calculations
are performed. Here, as in [14], we performed genetic algorithm (GA) computations [15] to
probe the low energy states, and Metropolis Monte Carlo (MC) [16, 17] for the equilibrium
values of quantities such as the centre of mass distance from the wall, the radius of gyration,
the internal energy and the free energy. The qualitative picture remains very similar to what
we find in two dimensions.

The paper is organized as follows. In section 2, we extend our model for a hydrophobic
chain interacting with a hydrophobic wall [13, 14] to three dimensions. In section 3, we outline
the methods used and report our results. Section 4 summarizes our conclusions.

2. Hydrophobic interactions within the decorated lattice model

In the decorated lattice model [11, 13] for hydrophobic interactions, water molecules occupy
the lattice sites, and the hydrophobic solute particles, represented by lattice gas variables
σi j = 0, 1, decorate the bonds. Each water molecule can be in one of many orientational states,
and is represented by Potts spins, si , which can take on q different values. The Hamiltonian is

H =
∑

〈i j〉
{δsi ,s j δ1,si [σi j(w − u) + u] + vσi j [1 − δsi ,s j δ1,si ]}, (1)

where the interaction energies have been chosen as w = −1.5, u = −1, v = 1 and q = 10
unless otherwise specified. This Hamiltonian corresponds to a situation where it is energetically
favourable, due to dipole–induced dipole interactions, for the hydrophobic molecules to be
interspersed among the water molecules, for a locally ordered state of the water molecules
where this insertion can be accomplished without breaking too many hydrogen bonds. This
ordered state is represented by requiring the neighbouring Potts spins to be set to si = 1,
and if there is a hydrophobe present to decorate the bond, one gets a contribution of w. If
there is no hydrophobe present, then this locally ordered state still has lower energy (u) than
the situation where some of the hydrogen bonds are broken, or the local order has given
way to complete disorder. This latter case has been chosen as the zero point of the energy.
Finally, introducing a hydrophobe into the completely disordered array of water molecules
costs an energy of solvation equal to v. The rationale behind the energy scale is that we
assume the ‘ordered, no hydrophobe’ and ‘disordered, with hydrophobe’ states to differ from
the ‘disordered, without hydrophobe’ state by about the same number of hydrogen bonds (each
∼17 eV), thus suggesting |u| = v, whereas the van der Waals interaction (further lowering the
energy in the ‘ordered, with hydrophobe’ situation) has perhaps been somewhat overestimated
with our choice of w − u = −0.5. Thus the natural unit of energy here is of the order of a
hydrogen bond per water molecule.
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For sufficiently high temperatures T , the free energy F = U − T S is more efficiently
lowered by raising the entropy S than by lowering the internal energy U . Raising the
orientational disorder of the water molecules, modelled by the Potts spins, is the most efficient
way of raising the total entropy of the system. This makes it unlikely for the hydrophobes
to intermix with the water in the equilibrium state. For yet higher temperatures, where the
internal energy itself is large, the totally intermixed situation is once more the equilibrium
state. Finally, note that larger values of q will lead to a more pronounced entropic effect, and
therefore stronger ‘hydrophobic interactions’ [13, 14].

It is easy to see that the maximal number of water molecules that can be constrained by N
hydrophobes in the low energy state is 2N , independently of the lattice dimensionality, when
the hydrophobes are dilute and randomly distributed. When they form a compact set on the
shifted lattice which they occupy, this number is of the order of N (since each hydrophobe
decorates a unit vector of the lattice on which the water molecules live), neglecting surface
effects.

To be able to cut down on computation time when simulating a chain of length
N , while respecting chain connectivity, we made use of an analytical mean-field type of
approximation [13] to the effective hydrophobic interactions between nearest neighbour (nn)
or next nearest neighbour (nnn) hydrophobic residues on the chain. Consider a water molecule
at some typical lattice site i . Let ti ≡ δsi ,1. The 2d bonds emanating from this site are decorated
by the lattice gas variables σ j corresponding to the hydrophobes and the t j terminating the 2d
bonds are set to their thermal averages. The mean field Hamiltonian for this system may be
written (dropping the i dependence) as

HMF =
∑

j=1,...2d

{t〈t〉[σ j (w − u − v) + u] + σ jv} − β−1µ(1 − t) ln(q − 1), (2)

where µ will eventually be set to unity. Note that 〈t〉 is related to the orientational order
parameter for the water molecules, which could have been defined as (q〈t〉 − 1)/(q − 1), to
range between 0 and unity. The value of 〈t〉 for each β is calculated self-consistently from

1 − 〈t〉 = [ln(q − 1)]−1 ∂

∂µ
ln Z |µ=1, (3)

where

Z =
∑

{σi },t
e−βHMF[t,{σi }]. (4)

To obtain the effective pair interactions M(β), we sum over the t in this expression, and equate
the result to a sum over Boltzmann factors involving an effective Hamiltonian, expanded in
terms of products of the lattice gas variables σ j [13]. Neglecting the higher order interactions,
which in three dimensions will go beyond the plaquette interaction, all the way to a term involv-
ing all the six hydrophobic lattice gas variables surrounding a central water molecule, we find,

eβM(β) = [(q − 1)e−2βv + e−β{〈t〉[2(w−v)+(2d−2)u]+2v}]
(q − 1) + e−β2d〈t〉u

[(q − 1)e−βv + e−β{〈t〉[(w−v)+(2d−1)u]+v}]2
.

To obtain the potential acting on each hydrophobe due to the presence of the hydrophobic
wall, we make use of dimensional reduction. The two-dimensional wall of infinite extension
(compared to the size of the molecules, or chains) suggests solving the decorated lattice model
exactly in one dimension, as a function of the normal distance to the wall [13]. This effective
potential is calculated as the free energy cost F(β, r) of introducing a hydrophobe (at the
position r ) into a semi-infinite chain, with one end fixed to be hydrophobic. The hydrophobic
‘force’ f (β, r) = −∂ F(β, r)/∂r per hydrophobic residue as a function of the distance from
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the hydrophobic wall extends up to six lattice spacings for β = 2, and is appreciable at smaller
distances within the approximate range 1 < β < 3 (see figure 3 of [14].) The attraction
is stronger for larger q . The size of the temperature interval within which the interaction is
appreciable, and of comparatively longer range, also increases with q . In this paper we have
confined ourselves to q = 10.

In all the simulations to be reported in the next section, the energy differences between
different configurations and the Boltzmann weights for the thermal averages were computed by
making use of the effective interactions M(β) and F(β, r), such that the effective Hamiltonian
on the lattice was

Heff = −
∑

(i j)

M(β) +
∑

i=1,...,N

F(β, ri ), (5)

where (i j) denotes all nn and nnn pairs on the chain (excluding the chemically connected ones)
and ri denotes the distance of the i th residue from the hydrophobic wall.

3. Simulations

We have performed Monte Carlo (MC) and genetic algorithm (GA) simulations to investigate
the thermal equilibrium and the low energy states, respectively, of the hydrophobic chains in
the vicinity of a hydrophobic wall. Here we would like to outline our simulation methods,
which have been explained in great detail in [14], and to report the results of simulations in
three dimension.

The Metropolis Monte Carlo method is guaranteed, in principle, to converge to the
equilibrium distribution [16, 17]. However, in many problems of interest, which involve a
large degree of frustration and consequently a very rugged energy landscape, very long-lived
metastable states and a large degeneracy of the ground state require special techniques to
achieve proper equilibration within reasonable computation times. We found that the present
problem exhibits a great degree of ground state degeneracy or near-degeneracy, due to purely
geometrical effects. Therefore it is worthwhile to try to investigate the low-lying energy states,
separately.

There are some well established schemes [17] for Monte Carlo simulations of flexible
chains, in particular the so-called ‘configurational bias Monte Carlo’ [18]. In this approach,
the molecular chain configurations are grown in such a way that each successive residue is
added according to a Gibbsian probability distribution defined over the available sites where the
growth can occur, and new conformations are generated by cutting back a chain at some random
point and regrowing it. In our case, this would have entailed regrowing the whole ensemble of
chains from scratch for each temperature, since the Boltzmann factors here depend not only
explicitly, but also implicitly on the temperature, through the effective, temperature dependent
‘Hamiltonian,’ equation (5), for both intra-chain interactions, and the external potential [19]. So
what we have done is to generate an ensemble of random self-avoiding chain configurations,
and subjected the chains to moves such as ‘crossovers’ and ‘mutations’ as defined below.
Different protocols for the selection of the chains, and acceptance or rejection of a move,
depended on whether we were optimizing with respect to the energy (GA) or trying to achieve
thermal equilibrium (MC).

3.1. Methods

The genetic algorithm [15], which is widely used in very high dimensional optimization
problems, is inspired by the genetic processes underlying natural selection. The moves are
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based upon the mutation of the linear code corresponding to a given individual in the population,
and the mixing, by means of a crossover operation, of the linear codes corresponding to two
different individuals. In this paper, crossover means that the sequence of numbers specifying
two selected configurations are interchanged onwards from a randomly chosen point. Mutation
of a chain means that the number specifying the relative orientation of a randomly chosen
director is changed randomly. Since the problem is invariant under translations parallel to the
wall, translations are performed in the direction perpendicular to the wall. A rotation is like a
mutation operation, but the director whose code is to be modified is the first in the sequence.
We have checked that all these operations conserve the connectivity of the chain.

In the course of MC simulations,we have used mutation, as well as translation and rotation,
to generate different chain configurations.

Both the MC and the GA procedures as we have implemented them [14] start out from
an initial population of random self-avoiding chain configurations. An ensemble of single
random chains of fixed length N , confined to a volume bounded by a pair of parallel walls,
and having periodic boundary conditions in the other directions, was grown step by step from
random initial positions, and with random initial orientations, requiring only that they do not
self-intersect, or collide with the walls.

A genetic algorithm step for evolving the population so that it inhabits the lowest energy
states of the system is effected in the following way. We select two configurations from the
current chain population, with probabilities proportional to a fitness function, which here we
have chosen to be equal to their Boltzmann weights, exp(−β Heff). We perform crossover
at a randomly chosen point in the two sequences of numbers characterizing the two chain
configurations; mutate the resulting two configurations by randomly modifying a number at a
randomly chosen point in each of the two sequences, as well as translating and rotating each
chain randomly; and finally we remove two randomly chosen individuals from the population.
This constitutes one step of the GA.

A Monte Carlo step consists of randomly selecting a chain configuration from the current
chain population, randomly picking one of the operations of translation, rotation or mutation
(with the same meanings as for the GA), checking that the resulting configuration does not
intersect itself or a wall, calculating the effective energy difference, �E , then accepting or
rejecting the new configuration according to the Metropolis criterion, and repeating this until
the whole population is exhausted.

In two dimensions, we tried also prefacing the MC relaxation with a GA calculation,so that
for each temperature, the relaxation started from a set of relatively low energy configurations.
After the same number of steps as that used to relax from a random set, we found that the
ensemble still retained to some extent certain features of the optimized set [14]. This could be
due to the fact that the ensemble has not yet completely equilibrated; and therefore we have
decided to avoid this here. We simply report the results of the GA or the MC procedures, with
the random population of self-avoiding chains on the lattice as the starting population.

3.2. Simulation parameters

The simulations were performed with a hydrophobic chain with N = 20 hydrophobic residues
placed on nearest neighbour positions on a 2N ×2N ×2N cubic lattice of unit lattice spacing.
One boundary of the lattice is taken to be a hydrophobic wall and the opposite boundary is
just a simple infinite barrier. The other four sides of the cubic lattice satisfy periodic boundary
conditions.
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A chain configuration (or walk) is labelled by a string of numbers starting with the three
coordinates of the chain, a number to indicate the Cartesian direction of the first step, and then
a sequence of numbers each indicating the director of the (n + 1)th step relative to the nth.
They are chosen such that the (n + 1)th director can take on the values an+1 = 1, 2, . . . , 5,
with 1 indicating the same direction as that of the step from the (n − 1)th site to the nth
(backfolding of the walk is prohibited). If this step is in the positive or negative x̂ direction,
then the rest of the possible directions are assigned an+1 values according to the ordered pairs
(2, ŷ), (3,−ŷ), (4, ẑ), (5,−ẑ). For other values of the director an , e.g., −x̂, ŷ etc, the pairing
of the Cartesian unit vectors is cyclically permuted. Only self-avoiding chain configurations on
the lattice, which also avoid intersection with any of the walls,are accepted. This representation
is convenient for performing the crossover and mutation operations under the genetic algorithm
or the Monte Carlo simulations.

Unless stated otherwise, all results are reported for an initial set of 103 random
configurations (whose positions and orientations have also been randomized) relaxed for
4 × 104 steps, and averaged over the last 5 × 103 steps. For each temperature, the same
set of 103 random configurations has been taken as the starting distribution. The error bars
correspond to one standard deviation computed over the last 5 × 103 steps of the iteration.
The error bars for the GA calculations are frequently smaller than the size of the symbols and
therefore invisible in the figures. For the GA computations, we report the Boltzmann weighted
averages over the set of lowest energy configurations to which the algorithm has converged.
The results of the MC calculations correspond to the thermal averages performed over the
equilibrated set of chains.

3.3. Results

We have demonstrated for two dimensions [14] that, since the distribution evolving under the
GA is more localized in energy, it is very close to being a microcanonical ensemble. Thus,
for the GA, the thermal average for observables such as the centre of mass displacement from
the wall, the radius of gyration, etc, almost coincide with the simple average taken over the
ensemble. This we also expect to be true for d = 3.

In figure 2 we see that the effective interaction with the wall, F(β, r), drives the chain to
within a few lattice spacings of the wall. The centre of mass displacement 〈rcm〉 from the wall is
very small, i.e., the chain adheres to the wall over a larger temperature interval (approximately
β ∈ (0.7, 3.0)) for the low energy configurations (GA), while in thermal equilibrium (MC) this
interval is narrower (approximately β ∈ (1.0, 2.5)). Outside this interval, the centre of mass
of the chain is precisely at mid-channel. Note that the low energy configurations obtained by
the GA for the centre of mass displacement, 〈rcm〉, in the region β ∈ (0.3, 0.7) are plagued by
large fluctuations; this is the region where the chain has collapsed upon itself as can be seen
from the dip in the radius of gyration, 〈Rg〉, in figure 3. Comparing with the results in two
dimensions [14], we find that qualitatively the picture is very similar. However, the lower limit
of the β interval over which the chain adheres to the wall is slightly smaller in three dimensions.

From figure 3, we see that the radius of gyration Rg = [N−1 ∑
i=1,...,N ρ2

i ]1/2, where ρi

is the distance of the i th residue from the centre of mass of the chain, is somewhat smaller
than for a self-avoiding walk (SAW) in three dimensions, of the same length, namely N3/5/2,
and slightly larger than for a random walk, N1/2/2. For β � 0.5 where the nearest neighbour
effective interactions are strongest (cf figure 1), we see that the radius of gyration shrinks
markedly and systematically. By contrast, in the interval where the chain is attracted to the
wall, the sample to sample variations in 〈Rg〉 are quite large, leading to large error bars in both
the GA and MC simulations.
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Figure 1. Effective two-body interaction calculated self-consistently in the mean field
approximation in two and three dimensions, as a function of the inverse temperature, β. The peak
is shifted to slightly higher temperatures (lower β) and the width of the maximum is diminished as
one goes from two to three dimensions.

Figure 2. The centre of mass displacement of a hydrophobic chain from a hydrophobic wall,
averaged over 5 × 103 steps after 3.5 × 104 relaxation steps, as a function of the (dimensionless)
inverse temperature, β, obtained via the genetic algorithm and Metropolis Monte Carlo calculations
(see the text). The parameter values in all the figures are w = −1.5, u = −1, v = 1.

It should be remarked that the two contributions to the Hamiltonian in equation (5), namely
the self-interaction of the chain and the interaction with the wall, come from different kinds
of approximations to the true problem. Therefore the relative size and the positioning of the
temperature intervals over which these two kinds of interactions are dominant should be taken
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Figure 3. The radius of gyration obtained from genetic
algorithm and Monte Carlo simulations.

Figure 4. The radius of gyration in the direction
perpendicular and parallel to the wall, for low energy
configurations, obtained via the genetic algorithm.

with some caution. Nevertheless, it is gratifying that the relative width and especially the order
of these intervals does not change when one goes from two dimensions [14] to three.

It is interesting to compare the results for 〈Rg〉 with those shown in figures 4, 5
for the radii of gyration in the directions parallel and perpendicular to the wall, namely
R‖ = [N−1 ∑

i=1,...,N ρ2
‖i ]

1/2, and R⊥ defined in an analogous way. This shows that in the
region where the chain is attracted to the wall, it gets extended in the parallel directions while
it shrinks in the perpendicular direction, confining itself to a pancake-like region near the
wall. Another quantity of interest is the length of the projection of the chain on the wall,
〈L‖ = (L2

x + L2
y)

1/2〉. A comparison of figure 6 with figure 2 and figures 4, 5 reveals that in the
temperature interval where the chain adheres closely to the wall, it will be relatively stretched
out, as can also be seen from 〈R‖〉. Note that, contrary to the case of the centre of mass
displacement of the collapsed chain, for the radii of gyration, the fluctuations are prominent
in the region of close approach to the wall.

In figure 7 the internal energy of the chain and free energy are shown. We see three
temperature intervals where the behaviour seems to differ qualitatively. The sharp minimum
in energy in the region where the first term in the Hamiltonian (equation (5)) is dominant, is
very pronounced, whereas in the region where the attraction to the wall (the second term in the
Hamiltonian) is dominant, there are big sample to sample fluctuations due to the fluctuation
in 〈L〉 and 〈Rg〉. We can also compute an effective ‘free energy’ for the ensemble of chains in
the vicinity of the wall,

Feff = −β−1 ln Zchain, (6)



Hydrophobic chains near hydrophobic surfaces—simulations in three dimensions S1191

Figure 5. The thermal average of the radius of gyration in
the direction perpendicular and parallel to the wall, from
Metropolis Monte Carlo.

Figure 6. The thermal average of the projected length
L‖ = (L2

x + L2
y)

1/2 of the chain on the wall. The first
and second panel correspond to the genetic algorithm and
Monte Carlo simulations respectively.

where

Zchain =
∑

config.

exp(−β Heff[config.]). (7)

Because of the compensating terms, namely the internal energy and the entropic term, in the
expression for the free energy, this last quantity is almost free of sample to sample fluctuations,
as can be seen from figure 7. Although it would seem that this free energy is plagued by
instabilities, i.e., regions where it is not convex with respect to the temperature, it should be
noted that this effective free energy is not the total free energy of the system we started out with.
In particular it does not include the fluctuations in the number of hydrophobic particles. (We
have checked, by exactly enumerating the configurations on a 2 × 2 lattice, that the residual
negativity in ∂2 F/∂T 2 is not coming from insufficient equilibration of the chains.)

In order to check the consistency of our results, we have also done simulations where the
initial random set was evolved to equilibrium at high temperature, and then the temperature
gradually lowered for each successive data point. The system is then slowly heated until
the initial temperature is reached. We report the MC results thermally averaged over 1000
configurations, and averaged over the last 5 × 103 steps of a trajectory of 2 × 104 steps, in
figures 8, 9. The error bars have been omitted from these figures for greater clarity. For
quantities where the fluctuations are relatively large, such as the projected length, or the radius
of gyration, there are slight differences in the thermal averages between the cooling and the
heating curves. On the other hand, the centre of mass distance from the wall, internal energy
or free energy show almost no hysteretic effects at all.
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Figure 7. The internal energy and the free energy as a
function of the inverse temperature, from Monte Carlo
calculations.

Figure 8. The cooling and heating curves (Monte Carlo
simulations) for the centre of mass distance from the wall,
and the radius of gyration. The curves are practically
indistinguishable from each other for 〈rcm〉, while for the
radius of gyration, which exhibits greater fluctuations,
there is a very small hysteresis.

4. Conclusions

We set out to investigate the behaviour of a system consisting of a hydrophobic chain in
a three-dimensional aqueous environment, bound on one side by a hydrophobic wall. An
extension of the decorated lattice model of Widom et al [11, 13, 14] was employed, and
numerical simulations were carried out on a three-dimensional lattice. We found that within
a certain temperature interval the chain binds on to the hydrophobic surface in a relatively
stretched out and flattened conformation,and at a slightly higher temperature interval it unbinds
from the surface and collapses onto itself, with a radically lower radius of gyration. More
accurate estimations of the short range hydrophobic intra-chain and chain–wall interactions
are called for, to make more reliable statements; nevertheless, our results should be of interest
for understanding the interaction between proteins and lipid surfaces.

Apropos of the problem of protein folding, the picture we obtain is suggestive of a
chaperoning function provided by the hydrophobic surface [20]. In fact, there exist studies
which reveal that the chaperoning action of the protein ‘chaperonin’ can be simply modelled
by the confinement of the protein inside a cylindrical cavity with hydrophobic walls [21].
Apparently, confinement inside a cage can already accelerate folding rates for (shorter) proteins
with relatively small amount of frustration [22], while for longer proteins, the hydrophobicity
of the wall is crucial [21].

We have already remarked that since different approximations have been made to model
the chain–wall and intra-chain interactions, the relative positions of the temperature intervals
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Figure 9. The cooling and heating curves obtained from MC simulations for the internal energy
and the free energy follow exactly the same trajectory.

we find here should be taken with some caution. Nevertheless, in the static picture presented
here, the presence of adjacent temperature intervals, where hydrophobic residues bind onto
a hydrophobic surface, and where the chain is collapsed onto itself, suggest that a cycling
of the temperature could very well lead to the effective sampling of alternate pathways. In
particular, coming from the side of low temperatures,first binding onto the hydrophobic surface
in a stretched out formation could facilitate the correct folding as the temperature is slightly
increased. Considering chains with both hydrophobicand polar residues (rather than the purely
hydrophobic chains we have considered here) makes this more likely. In this case, one could
argue heuristically that the flattened conformation against the wall would have the hydrophobes
predominantly closer to the wall. As the temperature is slightly raised, and the chain detaches
from the wall, one has an easy pathway for the already relatively segregated hydrophobes to
fold up into the core of the collapsed conformation.
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